Skip to main content

Ph.D Science Education

bulb
Degree Type
Doctor of Philosophy
Modes of Study
Regular
Programme Duration
2 years (Standard Entry)

Programme Structure

Level 800

Second Semester

ESC804 PRINCIPLES OF SCIENCE TEACHER EDUCATION AND SUPERVISION
3 Credit(s)

This course provides an overview of the components considered vital for leadership effectiveness. It is designed to prepare postgraduate science teachers to play leadership roles in the education system. Students will demonstrate a better understanding of the principles of science teacher education and supervision. Students will describe, practise and synthesize systematic steps required for supervision. This course will cover topics such as principles of professionalism for science educators; history of supervision; supervisory behaviours; principles of communication, observations, relationships and expectations (CORE); and tasks in supervision.

CHE812 NATURAL PRODUCTS
3 Credit(s)

This course introduces students to basic knowledge within natural product chemistry including the distribution of selected secondary metabolites, their biosynthesis and bioactivity. Furthermore, the objective of the course is to provide students with knowledge on biotechnology-based production of secondary metabolites in particular bioactive natural products as well as knowledge on and experience with isolation, and quantification of secondary metabolites using chromatographic and spectroscopic techniques as well as bioassay-guided chromatographic fractionation.

CHE820 SEPARATION METHODS
3 Credit(s)

 

 

This course covers general concepts underlying techniques within the confines of analytical, physical, inorganic, and organic areas of Chemistry. Advanced treatment of topics such as solvent extraction, distribution ratios, and the pH effects of solution among others will be undertaken in this course.

CHE821 ORGANOMETALLIC CHEMISTRY
3 Credit(s)

This course will look at the definition of organometallic compounds, reactions of organometallic compounds and synthesis of some of them. The course will help students identify organometallic compounds from other organic compounds containing metals.  The course will conclude with some catalytic processes and cycles.

CHE822 ELECTROANALYTICAL METHODS
3 Credit(s)

This course deals mainly with the fundamental principles of chromatography, liquid chromatography, gas chromatography, electrophoresis and other separation techniques. Instrumentation and fundamental concepts with broad relevance in many disciplines of Analytical Chemistry will be covered in the course. 

ESC810 QUALITATIVE AND MIXED METHODS APPROACHES IN SCIENCE EDUCATION RESEARCH
3 Credit(s)

 

The course will expose students to the theories that underpin the qualitative and mixed methods research paradigms. It aims at the development of the knowledge and skills of students to enable them conduct a variety of qualitative and mixed methods studies aimed at improving teaching and learning of science in schools and other educational settings. It is expected that at the end of the course students will write a research proposal for a study that could be the focus of their thesis. Topics to be covered include: Various qualitative research approaches such as case studies, content analysis, ethnography, phenomenology, teaching experiments, and grounded research theories; Sequential and concurrent mixed methods approaches; Validity and reliability. Development of qualitative instruments, as well as data collection methods, and analyses will also be explored both manually and the use of the NVivo software.

ESC814 APPLICATION OF STATISTICAL METHODS IN SCIENCE EDUCATION
3 Credit(s)

The course will equip student with adequate theoretical background, content and statistical tools and techniques required for analyses of quantitative research data. For each of the statistical tools and techniques the objective is to provide opportunities for students to develop a conceptual understanding of what that statistical tool is, when to use it (including the underlying assumptions and how to test them), how to use it, and how to interpret the results. Students will be exposed to the use of Predictive Analytics Software (PASW) and Microsoft Excel to run the various analyses. Topics include: The Power of Statistical Test; Point-Biserial Correlation; Multivariate analysis of variance – MANOVA, Analysis of covariance – ANCOVA; Analysis of covariance – ANCOVA; Scale Construction- levels of measurement,  factor analysis, cyclical scale refinement; Multiple regression analysis; Structural Equation Modelling; Cluster analysis; Effect Size and Post Hoc Analyses; Various non-parametric statistics: Mann-Whitney, Wilcoxon, Friedman & Kruskal Wallis, Logistic Regression and Kendall’s concordance will also be discussed. 

ESC852 RESEARCH PRACTICUM IN SCIENCE EDUCATION
3 Credit(s)

This is a supervised research practicum course. It is designed to give students an opportunity to plan a small research and carry it through. Thus, the course provides flexibility for students to design, execute, analyze, present, critique, and revise research projects. The student is free to use any research design – quantitative, qualitative or a mixed method. The research does not need to be the eventual research to be conducted by the student though the freedom of this work leading to the student’s ultimate doctoral research is permitted. It is expected that each student will submit a 10 to 15 page report of their study at the end of the semester. Technically, for a typical research practicum, there is no or minimal teaching of new content. Consequently, only the following two topics will be covered to improve students’ writing skills: How to review a research paper and development of conceptual/theoretical framework for research.

PAR709 ADVANCED MOLECULAR GENETICS AND BIOTECHNOLOGY
3 Credit(s)

The course will emphasize the construction and analysis of DNA/genomic libraries, preparation of synthetic oligonucleotide probes, purification and radiolabelling of DNA and hybridization. The course also covers also covers DNA amplification using Polymerase Chain Reaction and sequencing of the amplified DNA, Recombinant DNA technology involving site-directed mutagenesis as well as transformation and expression in vectors and hosts will be discussed. Detection and analysis of expressed proteins from cloned genes will also be considered.

PHY806 LASER AND OPTICAL PHYSICS
3 Credit(s)

Laser sources, application formula, optical system design, He-Ne laser, spectroscopy, mode selections, stabilization methods, gas lasers, measuring techniques.

First Semester

CHE 804 SOLUTION EQUILIBRIA
3 Credit(s)

Almost all reactions that concern chemists take place in solutions rather than in gaseous or solid phases. The course hence aims at exposing students to solutions of reacting molecules in liquids. It offers students an understanding of a variety of physico-chemical phenomena and ease of handling and rapidity of mixing different substances. Students will also be exposed to polyprotic acids, second and third dissociation constants, colligative properties, and predominant species as a function of pH. This course focuses on providing students with an understanding of the various solution properties and explanation of variety of physicochemical phenomena. Special emphasis will be placed on the properties of solutes and solvents, thermodynamics of electrolytes, kinetics and transport properties. The course covers aspects of colligative properties, reactions in solutions, advance buffer calculations, formation constant expression for complexes and polyprotics, titration and titration curves, and equilibria in redox and non-aqueous systems.

CHE822 SOLUTION EQUILIBRIA
3 Credit(s)

Almost all reactions that concern chemists take place in solutions rather than in gaseous or solid phases. The course hence aims at exposing students to solutions of reacting molecules in liquids. It offers students an understanding of a variety of physico-chemical phenomena and ease of handling and rapidity of mixing different substances. Students will also be exposed to polyprotic acids, second and third dissociation constants, colligative properties, and predominant species as a function of pH. This course focuses on providing students with an understanding of the various solution properties and explanation of variety of physicochemical phenomena. Special emphasis will be placed on the properties of solutes and solvents, thermodynamics of electrolytes, kinetics and transport properties. The course covers aspects of colligative properties, reactions in solutions, advance buffer calculations, formation constant expression for complexes and polyprotics, titration and titration curves, and equilibria in redox and non-aqueous systems.

MBB812 BIOTECHNOLOGY AND TISSUE CULTURE I
3 Credit(s)

Topics to be treated include Review of nucleic acid chemistry: DNA structure as a genetic material, RNA transcription and translation. The central Dogma theory: one-gene one –polypeptide, DNA-protein interactions. Regulation of gene expression. Microorganisms in Biotechnology, review of microbial genetics: screening, selection and strain improvement. Fermentation, Sterilization techniques and culture media preparation. Principles and practices of Tissue culture and initiation and maintenance of cell cultures. Somatic embryogenesis and organogenesis. 

PHY805 COMPUTING AND NUMERICAL METHODS
3 Credit(s)

Computer architecture, programme language, programme development and algorithms, interfacing, numerical methods in computing, application of filter design, Fourier analysis, digital filtering, fast Fourier transform.

PHY827 ATMOSPHERIC PHYSICS
3 Credit(s)

 

 

Physics of the ionosphere; Interaction of electromagnetic radiation with the constituents of the middle atmosphere; Rarefied aerodynamics – a study of perturbation; Mesosphere as a transition region; Transport and dynamics in the middle atmosphere; Hydro magnetic behavior near neutral point; The model of the interplanetary magnetic field.